

Background:

Traumatic brain injury (TBI) can cause severe mortality and social burden because of disability. While symptoms of mild TBI are generally transient, sometimes mild TBI can result in persistant brain cognitive impairments. TBI patients usually activate emergency medical service (EMS) system to seek medical help. However, it is difficult for EMS providers to predict prognosis of TBI patients at field. Adequate assessment and disposition of mild TBI patients from prehospital stage is important for improving outcomes. This study aims to develop and validate prediction model of mild TBI for clinical outcomes in EMS-assessed mild TBI patients using prehospital variables.

Methods:

This is a multi-center and retrospecitve data analysis study using the Pan-Asian Trauma Outcomes Study (PATOS).

Population :

Adult mild TBI patients transported by EMS in South Korea were analyzed. Severe head injury, emergency departement (ED) visit after 24hours from injury, prehospital arrest, transfer from other medical facility and unknown outcome cases were excluded.

Outcome :

The primary outcome was poor neurological difference of glasgow outcome scale (GOS). GOS difference was calculated by subtracting GOS at hospital discharge from GOS at ED arrival. If the difference was greater than 1, the difference of GOS was considered poor. The secondary outcome was ICU admission or in-hospital mortality.

A Prediction Model for Mild Traumatic Brain Injury Using Prehospital Variables Kim Dae Kon, Shin Sang Do, Song Kyoung Jun, Hong Ki Jeong, Park Jung Ho, Ro Young Sun, Jeong Joo Seoul National University Bundang Hospital

Statistical Analysis :

We divided the available data set into development (70%) and validation (30%) set randomly. The model was developed in the development set and validated in the validation set. Multiple data imputation was used to account for missing data. The discrimination and calibration performance of the model was calculated by the area under the receiver operating characteristics curve (AUROC) and Hosmer-Lemeshow test in the validation set, respectively. Finally, the performance of the model was compared to that of revised trauma score (RTS) model.

Results & discussion :

Among 84,046 eligible patients, 6,098 patients were enrolled to the final analysis after inclusion and exclusion criteria. The median age of enrolled patients was 55 years old. The proportion of male was 59.4%. Poor neurological difference rate and ICU or in-hospital mortality was 1.8% and 3.3%, respectively. AUROC of the developed model and the RTS model for poor GOS difference was 0.79 (95% CI 0.7-0.88) and 0.74 (95% CI 0.64-0.84), respectively. AUROC of the developed model and the RTS model for ICU admission or in-hospital mortality was 0.77 (95% CI 0.71-0.83) and 0.75 (95% CI 0.68-0.81), respectively.

Prin	mary	out	tc
	V		

	AUROC	95% CI	p-value	
RTS model	0.74	0.64~0.84	0.11	
New model	0.79	0.7~0.88	0.23	
Secondary outcome				
	AUROC	95% CI		
RTS model	0.75	0.68~0.81	0.01	
New model	0.77	0.71~0.83	0.19	

Table 2. AUROC comparison between the new and RTS model in the validation set

come

PATOS total (2015-2018)				
N=84,046	Othen countries			
	Other countries N=41,790			
Korea				
N=42,256	Pediatric			
	N=4,929			
Adult (age over 17 years old)				
N=37,327	No head injury			
▼ Injury location Head	N=25,870			
N=11,457				
	► Other body area severe injury			
Other body area AIS < 3	N=1,572			
N=9,885				
	Moderate or severe TBI			
Prehospital mild TBI (HAIS<3)	N=2,001			
N=7,884				
	More than 24hour after injury			
Within 24hour of injury	N=535			
N=7,349				
♥	Transfer from other facility N=442			
Research hospital ED first visit	IN-442			
N=6,907	Prehospital CPR			
	N=154			
No Prehospital CPR				
N=6,753	Unknown outome			
	N=655			
Known outcome, final				
N=6,098				
Development set (70%)	Validation set (30%)			
N=4,269	N=1,829			

Fig 1. Study flow chart

		All Develo		Dovolopy	opment set Validation set			
A 11			07					
All		Ν	%	Ν	%	Ν	%	
		6098	100.0	4269	70.0	1829	30.0	p-value
Age								0.88
	Median	(~~	(0)	(.		(,	\sim (0)	
	(IQR)	55 (39	-68)	54 (39	9-68)	55 (4)	0-68)	
Gender								0.01
	Male	3624	59.4	2587	60.6	1037	56.7	
	Female	2474	40.6	1682	39.4	792	43.3	
ISS		• / •	•				10 0	0.40
	1~8	5880	96.4	4122	96.6	1758	96.1	-
	9~15	218	3.6	147	3.4	71	3.9	
	Median	. (.	-)	. (.	-)	. (.	-)	
	(IQR)	1 (1-	3)	1 (1	-3)	1 (1	-3)	
GOS difference								0.67
	Good	5988	98.2	4194	98.2	1794	98.1	
	Poor	110	1.8	75	1.8	35	1.9	
ICU or In-hospital								0.10
mortality								0.19
	No	5896	96.7	4136	96.9	1760	96.2	
	Yes	202	3.3	133	3.1	69	3.8	

Table 1. Demographic findings between development and validation set

Conclusion :

This unique prediction model with variables available from the prehospital stage can offer clue for effective patient triage. Our model was slightly superior to the RTS model in predicting poor GOS difference and ICU admission or in-hospital mortality.